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Prompts: “A cat is on a table” → “jumps to the floor” → “jumps to the sofa” → “walks to the table again” → “sits down and looks around”

Prompts: “A man is typing on a laptop” → “touches his headphone with his right hand” → “closes the laptop with his left hand” → “stands up”

Prompts: “A man is smiling” → “looks to his left with a surprised face” → “lowers his head with a sad face” → “smiles to the camera again”

Prompts: “An old lady waves her right hand” → “makes a thumbs-up gesture” → “makes a heart gesture” → “gives a blow kiss”

Figure 1. Time-controlled multi-event video generation with MinT. Given a sequence of event text prompts and their desired start and
end timestamps, MinT synthesizes smoothly connected events with consistent subjects and backgrounds. In addition, it can control the
time span of each event flexibly. Here, we show the results of sequential gestures, daily activities, facial expressions, and cat movements.

Abstract
Real-world videos consist of sequences of events. Gen-

erating such sequences with precise temporal control is in-
feasible with existing video generators that rely on a sin-
gle paragraph of text as input. When tasked with generat-
ing multiple events described using a single prompt, such
methods often ignore some of the events or fail to arrange
them in the correct order. To address this limitation, we
present MinT, a multi-event video generator with temporal
control. Our key insight is to bind each event to a specific
period in the generated video, which allows the model to
focus on one event at a time. To enable time-aware inter-
actions between event captions and video tokens, we design
a time-based positional encoding method, dubbed ReRoPE.
This encoding helps to guide the cross-attention operation.
By fine-tuning a pre-trained video diffusion transformer on
temporally grounded data, our approach produces coherent
videos with smoothly connected events. For the first time
in the literature, our model offers control over the timing of
events in generated videos. Extensive experiments demon-

strate that MinT outperforms existing open-source models
by a large margin. Additional results and details are avail-
able at our project page.

1. Introduction
Recent research in video diffusion models [37] has achieved
tremendous progress [8, 9, 13, 14, 26, 36, 69, 96]. These ap-
proaches typically rely on a single text prompt, and generate
videos capturing only a single event. In contrast, real-world
videos often comprise sequences of events with rich dynam-
ics. Thus, achieving realism requires the ability to generate
multiple events with fine-grained temporal control [63, 88].

A naive solution to multi-event video generation is to
concatenate all event descriptions into a single, extended
prompt, such as “A man raises his arms, lowers them down,
and then moves them left and right”. However, Fig. 2 shows
that even state-of-the-art video models struggle to produce
satisfactory results from such prompts. Some recent works
tackle this problem in an autoregressive way [63, 87]. They
generate each event individually with its own prompt, and
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Prompts: “A man lifts his head and arms up” → “lowers them down” → “moves his head and arms to his left” → “moves them to his right”
Figure 2. Multi-event video generation results from state-of-the-art video generators and MinT. We run two open-source models
CogVideoX-5B [100] and Mochi 1 [82], and two commercial models Kling 1.5 [2] and Gen-3 Alpha [1] with a text prompt containing four
consecutive events. All of them only generate a subset of events while ignoring the remaining ones. In contrast, MinT generates a natural
video with all events smoothly connected. Please refer to Appendix C.6 and our project page for more comparisons.

condition the model on the last frame of the previous event
to ensure consistency. Yet, they often generate stagnated
video frames with limited motion [22, 31]. Another line
of work leverages personalized video generation to synthe-
size multiple event clips with consistent subjects [50, 54].
To get the final video they have to concatenate all the gener-
ated clips into one, leading to abrupt scene cuts. In addition,
all existing methods present each event with a fixed-length
video and cannot control the duration of individual events.

Recent work [47, 49] has shown that text-guided models
often struggle with intricate spatial prompts, which can be
improved by binding objects to spatial inputs (e.g., bound-
ing boxes). Similarly, we hypothesize that the absence of
explicit temporal binding precludes successful multi-event
video generation in current models. Given a multi-event
text prompt without timestamps, the generator must plan
the time range of each event to form a video, which involves
complicated reasoning. Inspired by the content-motion de-
composition paradigm in video generation [83, 86], we pro-
pose to use (i) a global caption depicting content such as
background and subject appearances, and (ii) a sequence of
temporal captions [44] describing dynamic events, as our
model input. Each temporal caption consists of a text de-
scription and the start and end time of the event. By pro-
viding temporally localized captions, the model can focus
on one event at a time. In addition, our model processes all
text prompts to generate a video in one shot, which ensures
consistent subjects and smooth transitions between events.

Our resulting method, named Mind the Time (MinT),
is a temporally-grounded video generator built upon a pre-

trained latent Diffusion Transformer (DiT) [66]. In each
DiT block, we employ two cross-attention layers for global
and temporal captions, respectively. To condition the model
on a sequence of events, we concatenate the text embed-
dings of all temporal captions and perform cross-attention.
The key challenge here is how to use the event timestamps
to associate each caption with corresponding video tokens.
Inspired by Rotary Position Embedding (RoPE) [81], we
introduce Rescaled RoPE (ReRoPE) to guide the event cap-
tion to focus on attending to frames within its time range
while ensuring a smooth transition between adjacent events.

In summary, this work makes four main contributions:
(i) MinT, the first video generator that supports sequential
event generation with time control. (ii) A novel training
strategy that conditions the model on scene cuts, facilitat-
ing training on long videos and shot transition control. (iii)
State-of-the-art multi-event video generation results in both
text-only and image-conditioned settings on a hold-out set
of our dataset and StoryBench [12]. (iv) An LLM-based
prompt enhancer that extends short prompts to detailed
global and temporal captions, from which we can generate
videos with richer motion evaluated by VBench [39].

2. Related Work

Text-to-video diffusion models. With recent progress in
diffusion models [35, 51, 78], text-to-video generation has
achieved tremendous progress [8, 36, 37]. Earlier works
inflate pre-trained image diffusion models by inserting tem-
poral attention layers [7, 9, 13, 14, 26, 29, 42, 77, 89, 93,
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95, 104]. They typically adopt a U-Net [75] model as the
denoising network and run the diffusion process in a com-
pressed latent space produced by a Variational Autoencoder
(VAE) [43, 74, 101]. Recently, Transformer-based archi-
tecture [66, 85] has drawn increasing attention as it demon-
strates better scalability in generating high-resolution and
complex videos [11, 17, 27, 57, 61, 69, 76, 100]. Neverthe-
less, we identify the inability to generate sequential events
as a common failure case in these models. By binding event
captions to time and fine-tuning on temporally-grounded
data, MinT greatly improves multi-event synthesis.
Story visualization. Traditionally, the goal of story visual-
ization is to generate a sequence of images with consistent
entities given multiple text prompts [58–60, 64, 73, 107].
Some recent works enhance the task by generating a video
for each text prompt [24, 30, 48, 102, 106]. They usually
leverage LLMs to plan the temporal ordering of events, and
then run video personalization methods to generate clips
with consistent character identities. However, these meth-
ods simply concatenate all generated clips to form a story,
resulting in abrupt scene cuts between events [50, 54]. In
this work, we tackle a different task that aims to generate
videos of multiple events with natural transitions.
Multi-event video generation. Several studies have ex-
plored the generation of temporally consistent videos from
multiple text prompts [22, 25, 31, 88]. The pioneering work,
Phenaki [87], trains a masked Transformer to generate each
event conditioning on its text prompt and frames from the
preceding event. However, the autoregressive generation
paradigm inevitably leads to quality degradation over longer
sequences. FreeNoise [70] and MEVG [63] instead use pre-
viously generated clips to initialize the noise latent of the
current clip, serving as a soft guidance for the model. A
fundamental limitation of sequential generation approaches
is that they generate all events with a fixed length [31]. In
addition, their model lacks information about future events
when generating the current event, preventing it from plan-
ning the entire video. On the contrary, MinT processes text
prompts of all events together, allowing fine-grained control
of event durations and generating globally coherent videos.
Rich captions for video generation. Previous large-scale
video-text datasets usually comprise videos with short cap-
tions [6, 18]. Recent studies have shown that detailed cap-
tions are crucial for high-quality video generation [11, 15,
41, 100]. Yet, these datasets mainly focus on the appearance
and spatial layout of all entities in a video. Closer to our task
is the LVD-2M dataset [97], which labels sequential events
in motion-rich videos. However, they only use text to de-
scribe the order of events, without localizing them in time.
In this work, we are the first to enhance captions with pre-
cise timestamps for video generation. In addition, we study
a previously overlooked scene cut annotation of video data,
which further enhances the controllability of our model.

3. Method
Task formulation. Given a sequence of N e temporally lo-
calized text prompts, {(cn, tstartn , tendn )}Ne

n=1, and N cut cut
timestamps, {tcutn }Ncut

n=1 , our goal is to generate a video con-
taining all events following their text prompt cn at the de-
sired time range (tstartn , tendn ). The video is assumed to have
no shot transition except at the input cut timestamps.
Overview. We build upon a pre-trained text-to-video Diffu-
sion Transformer (DiT) [66] (Sec. 3.1). Our method, MinT,
incorporates a temporally-aware cross-attention layer to en-
able event timestamp control (Sec. 3.2) and conditioning on
video scene cuts (Sec. 3.3). Finally, we design a prompt en-
hancer that allows users to generate multi-event videos from
simple prompts with our model (Sec. 3.4).

3.1. Background: Text-to-Video Latent DiT
Given a video, our latent DiT [66] first encodes it to video
tokens z with a tokenizer [43]. Then, it adds Gaussian noise
ϵt to z to obtain a noisy sample zt, and trains a denoising
network following the rectified flow formulation [51, 52]:

LDiT = ||vt − uθ(zt, t,y)||2, where vt = ϵt − z. (1)

Here, uθ is implemented as a Transformer model [85] con-
sisting of a stack of DiT blocks, and y denotes the condi-
tioning signals such as text embeddings of a video caption.
Similar to recent works [27, 69, 103], each DiT block in our
base model contains a self-attention layer over video tokens,
a cross-attention layer fusing video and text, and an MLP.
Rotary Position Embedding (RoPE). To indicate the po-
sition of video tokens in attention, our base model utilizes
RoPE [81] due to its wide application in recent works [23,
46, 56, 100]. At a high level, given a sequence of N vectors
{xn}Nn=1, RoPE computes an angle θn for each vector xn

using its position n, and rotates xn with θn to obtain x̃n:

θn = nθbase, x̃n = RoPE(xn, n) = xne
iθn , (2)

where θbase is a pre-defined base angle.1 With RoPE, a vec-
tor xn has a similar rotation angle with a vector xm when
n and m are close. Consequently, RoPE encourages nearby
vectors to have a higher self-attention weight An,m:

An,m = Re[⟨x̃n, x̃m⟩] = Re[⟨xn,xm⟩ei(n−m)θbase ]

= Re[RoPE(⟨xn,xm⟩, n−m)], (3)

where An,m decreases monotonically with |n − m| when
(n−m)θbase ∈ [−π/2, π/2]. This usually holds in our DiT
since the video tokens z are of low resolution. Please refer
to Appendix A.2 for a rigorous discussion. In our video
DiT, RoPE is only applied in the self-attention. There is no
positional encoding in the video-text cross-attention as the
input text prompt is expected to describe the entire video.

1In fact, RoPE uses a list of angles θ ∈ Rh/2 to rotate each element of
a vector x ∈ Rh separately. We treat it as a single angle for simplicity in
this paper, as all dimensions of θ changes monotonically with n [81].
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Global caption: “A fair-skinned elderly man 
in a short-sleeved white shirt sits next to a 
digital piano in a recording studio room, …”

Event 1: “The man 
plays the piano.”
Time span: [0s → 2s]

Event 2: “The man 
takes some papers 
and shakes them in 
front of the camera.”
Time span: [2s → 5s]

Event 3: “The man 
puts the papers back.”
Time span: [5s → 6s]

Scene cut
Time: 2s

Temporal captions

Video
tokens

Event 1
Event 2

Event 3

Text embs

Pos.Enc.

Cut
 token

1.0s 3.5s

Cross-attn mapPos.Enc.

Video tokens

Self-Attn

Temporal
Cross-Attn

Global
Cross-Attn

(b) Video DiT Block

5.5s 2.0s

(a) Time-based caption data (c) Temporal Cross-Attn Layer
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C
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Figure 3. MinT framework. (a) Our model takes in a global caption describing the overall video, and a list of temporal captions specifying
the sequential events. We bind each event to a time range, enabling temporal control of the generated events. (b) To condition the video
DiT on temporal captions, we introduce a new temporal cross-attention layer in each DiT block, which (c) concatenates the text embedding
of all event prompts and leverages a time-aware positional encoding (Pos.Enc.) method to associate each event to its corresponding frames
based on the event timestamps. MinT supports an additional scene cut conditioning, which can control the shot transition of the video.

3.2. Temporally Aware Video DiT
Existing text-guided video diffusion models only take in
one global text prompt for a video. As shown in Fig. 3 (a),
we further input a sequence of temporal captions that bind
each event to an exact time range. The decomposition of
global and temporal captions resembles the classic content-
motion disentanglement in video generation [83, 86], pro-
viding a clearer guidance of video dynamics to the model.
Temporal cross-attention. To condition MinT on tempo-
ral captions, we add a new temporal cross-attention layer
between the original self-attention and cross-attention lay-
ers as shown in Fig. 3 (b). Prior works [47, 90, 92] show that
such design enables fast adaptation to new spatial condition-
ing input, and we show that it also works for temporal con-
ditioning. We first extract text embeddings ecn ∈ RLc×Dc

for each event text prompt cn, where Lc and Dc are the text
length and the embedding dimension, respectively. Then,
we apply positional encoding to each ecn to indicate its time
span [tstartn , tendn ], and concatenate them along the sequence
dimension to perform cross-attention with video tokens:

ẽcn = Pos.Enc.(ecn, t
start
n , tendn ),

z̃ = XAttn(z,Concat([ẽc1, ẽ
c
2, ..., ẽ

c
Ne ])). (4)

Apart from positional encoding, an intuitive way to indicate
event time range is hard masking, where we only allow ecn
to attend to video tokens within [tstartn , tendn ]. However, for
frames close to an event transition point, it is beneficial to
receive information from both events to synthesize a smooth

transition. Therefore, we decide to use RoPE to serve as soft
masking to guide the text embedding of each event.

Intuitively, we want the temporal cross-attention to have
three key properties: (i) For video tokens within the time
span of an event, they should always attend the most to the
text embedding of this event. (ii) For an event, the attention
weight should peak with the video token at the midpoint of
its time span, and then decrease towards the boundary of the
event. (iii) The video token at the transition point between
two events should attend equally to their text embeddings,
which helps the model localize the event boundary.
Below, we show that vanilla RoPE fails to achieve (i) and
(iii), necessitating a new positional encoding for this task.
Vanilla temporal RoPE. We start from the standard RoPE
in Eq. (2). For a video token z[t,·,·] at any spatial location
on frame t, we only use the timestamp t to determine its
rotation angle θ since we focus on temporal correspondence
here. For an event happening in [tstartn , tendn ], a natural way
to encode its text embedding is using its middle timestamp
tmid
n = (tstartn + tendn )/2. Therefore, the vanilla RoPE is as:

z̃[t,·,·] = RoPE(z[t,·,·], t), ẽcn = RoPE(ecn, t
mid
n ), (5)

Attn(z̃[t,·,·], ẽ
c
n) = Re[RoPE(⟨z[t,·,·], ecn⟩, t− tmid

n )] (6)

Such design satisfies property (ii), while violating the other
properties as shown in Fig. 4 (a). In this example, frame 7
belonging to the first event is closer to tmid

2 than tmid
1 and

thus has a higher attention weight with the second event. In
addition, frame 8 which is at the intersection of two events
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(a) Vanilla RoPE. Frame 7 has 
higher attention wight with Event 2.

(b) Our ReRoPE (rescaled to L=4).
Same attention weight at event border.

Text embs
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Figure 4. Comparison of vanilla RoPE and our Rescaled RoPE.
We use the same random vector for video tokens and text embed-
dings to only visualize the bias introduced by positional encoding.
(a) Vanilla RoPE uses raw timestamps as the rotation angle, where
frames within one event might be biased to the wrong text. (b) We
instead rescale all events to have the same length L, so that video
tokens always attend the most to the current event. In addition,
frames at event boundaries attend to adjacent events equally.

attends to the second event more than the first one. As a
result, the model cannot locate the correct event boundary.
Rescaled RoPE (ReRoPE). When adjacent events have
different durations, their midpoints’ distance to the event
boundary also becomes different, causing vanilla RoPE to
fail. Therefore, we propose to rescale all events to the same
length L and recompute timestamps for encoding in Eq. (5).
For a timestamp t lying in the n-th event, we transform it as:

t̃ =
(t− tstartn )L

tendn − tstartn

+ (n− 1)L, s.t. tstartn ≤ t ≤ tendn . (7)

Using Eq. (7) for both video tokens and events, we have:

t̃− t̃mid
n =

(
t− tstartn

tendn − tstartn

− 1

2

)
L. (8)

As we show in Appendix A.2, our ReRoPE design achieves
all three desired properties in the temporal cross-attention.

Inspired by Positional Interpolation [16], we set a fixed
value for L, so that videos of different lengths are rescaled
to the same length in Eq. (8). As a result, ReRoPE always
induces the same attention bias to temporal cross-attention,
making the layer invariant to the actual video length.

3.3. Scene Cut Conditioning
Prior large-scale video datasets usually remove videos with
scene cuts or split them into shorter clips [18, 41, 94]. In-
deed, training a generator on videos with cuts may lead to
undesired scene transitions in generated videos.

Typically, professionally edited videos contain frequent
cuts, and excluding them in training may lose valuable in-
formation. Removing such clips also reduces the amount of
training data significantly (in our data 20% of clips contain
cuts). But most importantly, it makes a model unable to use
such a valuable cinematographic effect, leading to tempo-
rally cropped videos. Prior image generators face a similar
issue with image cropping [68], where the model may learn
to generate “cropped” images with out-of-frame objects.
Based on these insights, we decide to keep all the videos,
while explicitly conditioning the model on the timestamps
of cuts. Once the model learns such conditioning, we can
input zeros during inference to enforce a cut-free video.

We treat a scene cut as a special event with the same con-
tent and equal start and end timestamps. To condition MinT
on it, we initialize a learnable vector ecut ∈ R1×Dc

, apply
ReRoPE with its timestamp tcutn transformed by Eq. (7), and
concatenate it with the text embeddings of temporal cap-
tions to perform cross-attention with video tokens:

ẽcutn = ReRoPE(ecutn , tcutn , tcutn ),

z̃ = XAttn(z, Concat([ẽc1, ..., ẽ
c
Ne , ẽcut1 , ..., ẽcutNcut ])). (9)

As we show in the ablation (Sec. 4.5), this design greatly
reduces undesired scene transitions when they are not re-
quested, and allows a practitioner to use them when needed.

3.4. Prompt Enhancer
MinT offers video generation with precise control of event
timing. Yet, in certain applications starting from a single
prompt can be more desirable. Prior works demonstrated
that LLMs can generate physically meaningful spatial lay-
out of scenes from text prompts [49, 50]. Similarly, we
show that LLMs can plan the temporal structure of multi-
event videos. Given a short text, we prompt LLMs to ex-
tend it to a detailed global caption and several event cap-
tions with their time span. Then, our model can generate a
video with rich motion content from the enhanced prompts.

4. Experiments
Our experiments aim to answer the following questions: (i)
Can MinT control event timing in both text-to-video (T2V)
and image-to-video (I2V) settings? (Sec. 4.2 & Sec. 4.3) (ii)
Does prompt enhancement lead to high-quality multi-event
videos from a single prompt? (Sec. 4.4) (iii) What is the
impact of each design choice in our framework? (Sec. 4.5)

4.1. Experimental Setup
We list some key aspects of our experimental setup here.
For full details, please refer to Appendix B.
Training data. Existing video datasets with time-based
captions usually come from dense video captioning [44,
105]. However, these datasets are limited in scale, which
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Figure 5. T2V results on HoldOut and StoryBench. For CogVideoX and Mochi we concatenated the events into a single prompt, similar
to the Concat baseline. Metrics in the first row measure visual quality, while those in the second row focus on the text alignment and
transition smoothness between events. MinT performs the best in event-related metrics while maintaining a high visual quality.

are impossible to fine-tune a large-scale video generator on.
Therefore, we manually annotate temporal events on videos
sourced from existing datasets [18, 98], resulting in around
200k videos, where we hold out 2k videos for evaluation. To
condition the model on scene cuts, we run TransNetV2 [80]
to detect scene boundaries on annotated videos.
Evaluation datasets. We leverage the 2k holdout videos
as our primary benchmark (dubbed HoldOut). We also test
on the StoryBench [12] dataset, which annotates temporal
captions similar to ours. We filter out videos with only a
single event, leading to around 3k testing samples. Finally,
to test MinT’s ability in generating motion-rich videos from
short prompts, we utilize prompt lists from VBench [39].
Baselines. To show that current video models are not capa-
ble of generating multi-event videos, we design a straight-
forward method, called Concat, that simply concatenates all
the prompts together. We apply it to both our base model
and state-of-the-art open-source models CogVideoX [100]
and Mochi [82]. We also compare to approaches with code
available and are designed to generate smoothly connected
events. MEVG [63] is the state-of-the-art multi-event video
generation method. It generates each event from its prompt
separately. To ensure smooth transitions, it runs DDIM in-
version [79] on the previously generated event as the noise
initialization for the current event. We also design a baseline
that fine-tunes an image-conditioned video diffusion model
to generate events autoregressively (dubbed AutoReg). To
separate the impact of architecture from the method, we im-
plement both MEVG and AutoReg on top of our base model
ensuring a fair comparison. Notably, since no baselines can
control event timing, we simply set all events to have the
same length to make the comparison possible.
Evaluation metrics. We focus on three dimensions: visual
quality, text alignment, and event transition smoothness.
We report common metrics such as FID [33], FVD [84]
for visual quality, and per-frame CLIP-score [32] for text

alignment. In addition, we leverage a state-of-the-art video
quality assessment model, VideoScore [28] as it has been
shown to produce results consistent with human evaluators.
We take the visual quality and dynamic degree output for
visual quality, the text-to-video alignment output for text
alignment, and the temporal consistency output for event
transition smoothness. Notably, since we care about event
generation, we compute text alignment between temporal
captions and video clips cropped out based on the event
span. Finally, we run TransNetV2 to detect the cuts in gen-
erated videos to measure event transition smoothness.
Implementation details. MinT builds upon a pre-trained
latent video DiT similar to [46, 103]. It generates videos of
512×288 resolution and up to 12 seconds. We fine-tune the
entire model with the AdamW optimizer [55] and a batch
size of 512 for 12k steps. For inference, we run 256 denois-
ing steps with a classifier-free guidance [34] scale of 8.

4.2. Text-to-Video Generation
Fig. 5 presents the quantitative results on HoldOut and Sto-
ryBench datasets. Fig. 6 shows a qualitative comparison.
Compared to Concat which shares the same base model as
ours, MinT achieves slightly lower visual quality on Hold-
Out and better results on StoryBench. This is because Sto-
ryBench prompts are out-of-distribution to our model. De-
spite this, time-based captions help MinT generate a video
with a good temporal structure. On the other hand, we gen-
erate events with much higher text alignment. We draw sim-
ilar observations when comparing MinT to the Concat base-
line based on CogVideoX and Mochi. Overall, this proves
that our model acquires the new capability of sequential
event generation while maintaining high visual quality.

As for multi-event generation methods, AutoReg and
MEVG greatly improve the text alignment, as they generate
each event from its prompt separately. Yet, AutoReg has
much lower visual quality, since conditioning on generated
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Prompts: “A woman takes a sip from a cup and puts it down” → “A man is writing something on the paper” → “They both start thinking with their left hand under their mouth”

Figure 6. Qualitative results of T2V. Concatenating all events into a single prompt (Concat) can only generate the first event. Autore-
gressive generation (AutoReg) suffers from video stagnation and cannot generate the third event. MEVG struggles to preserve the person’s
identity and produces abrupt event transitions. MinT is the only method that generates all events with smooth transitions and consistent
content. See Appendix C.1 for more qualitative results and our project page for video results.
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Figure 7. Human preference evaluation against T2V baselines.
MinT is better or competitive in visual quality, and significantly
outperforms baselines in the other three event-related metrics.

frames leads to artifacts such as video stagnation. MEVG
resolves this issue with frame inversion. However, it often
generates abrupt transitions between events as indicated by
the large number of cuts. In fact, we found that the inver-
sion technique in MEVG only works well when two consec-
utive event captions have a similar structure, e.g., the same
subject doing different actions. When two captions have a
subject change such as in Fig. 6, the generated events usu-
ally contain completely different characters. Overall, MinT
achieves the best balance between video quality, event lo-
calization, and temporal smoothness of the video. See Ap-
pendix C.6 for comparisons with commercial models.
Human evaluation. We conduct a user study using 200
randomly sampled prompts from HoldOut. We ask the par-
ticipants to express their preference when presented with
paired samples from MinT and each baseline, gathering
votes from 5 users per sample. Results in Fig. 7 show that
MinT has better or competitive visual quality, while gener-
ating events with significantly higher text alignment, timing
accuracy, and transition smoothness.
Event time control. MinT supports fine-grained control of
event timing. Please refer to Appendix C.4 for our results.

4.3. Image-conditioned Video Generation
We evaluate the model’s ability to animate entities in an ex-
isting image to perform sequential events. Following [12],

Method FID ↓ FVD ↓ VQ ↑ DD ↑ CLIP-T ↑ TA ↑ TC ↑ #Cuts ↓

Dataset: HoldOut

MEVG 57.57 495.75 2.56 3.39 0.266 2.72 2.25 0.108
Ours 22.04 218.21 2.60 3.30 0.272 3.00 2.47 0.025

Dataset: StoryBench

MEVG 56.51 732.94 3.27 3.80 0.265 2.83 3.03 0.150
Ours 21.85 314.59 3.36 3.76 0.273 3.37 3.29 0.014

Table 1. I2V results on HoldOut and StoryBench. VQ, DD,
TA, and TC stand for visual quality, dynamic degree, text-to-video
alignment, and temporal consistency from VideoScore. #Cuts is
the average number of cuts per video. Similar to T2V, MinT also
achieves better visual quality and smooth event transition.

models have access to the ground-truth initial frame of test-
ing videos as well as the event text prompts.
Settings. The same datasets and metrics as in the T2V
setting are employed. We compare with the best baseline,
MEVG. It has an image-conditioned variant that replicates
the initial frame to form a pseudo video. For MinT, we fine-
tune it to condition on an image by concatenating the image
with the noisy latent similar to prior works [8, 96].
Results. Tab. 1 presents the multi-event image animation
results on HoldOut and StoryBench datasets. We draw sim-
ilar observations as in the T2V setting. MinT achieves ei-
ther better or competitive results in visual quality, while
performing significantly better in text alignment with event
captions and temporal smoothness of event transitions.

4.4. Prompt Enhanced Video Generation
MinT introduces a new dimension to prompt enhancement,
where users can control the amount of motion in the gener-
ated video via temporal captions. We show that this process
can be automated by an LLM. This enables users to gener-
ate more interesting videos from a short prompt.
Dataset. Since we are interested in the motion of generated
videos, we take the list of prompts from the Dynamic De-
gree evaluation dimension on VBench [39]. These prompts
are diverse and always contain subjects performing non-
static actions. Yet, they are all short with around 10 words.
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Method Subject Background Aesthetic Imaging Motion Dynamic
Consist. ↑ Consist. ↑ Quality ↑ Quality ↑ Smooth ↑ Degree ↑

Short 0.857 0.939 0.498 0.583 0.995 0.481
Global 0.890 0.950 0.541 0.613 0.995 0.517

Ours 0.900 0.950 0.544 0.609 0.988 0.711

Table 2. Prompt enhancement results on VBench. Consist.
means consistency. The first four metrics measure video quality,
while we focus on the motion of generated videos. MinT generates
videos with significantly higher dynamics degree and competitive
visual quality and motion smoothness.

Prompts: “A cat walks towards a bowl” → “laps water with tongue” → “lifts its head”
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Figure 8. Qualitative comparison of prompt enhancement re-
sults. The original short prompt is “a cat drinking water”.

Prompt enhancer. We prompt GPT-4 [3] to extend the
short prompt to a detailed global caption and temporal cap-
tions. Please refer to Appendix C.2 for the prompt we use.
Baselines and evaluation metrics. We compare with
videos generated by our base model using the original short
prompts (dubbed Short). To disentangle the effect of global
caption and temporal captions, we also compare to videos
generated by our base model using the enhanced global cap-
tion (named Global). For evaluation, we compute six met-
rics from the official VBench test suite, which focus on vi-
sual quality, temporal smoothness, and motion richness.
Results. Tab. 2 demonstrates the video generation results
from enhanced prompts on VBench. Global performs con-
sistently better than Short, proving that using a detailed
prompt is indeed beneficial. When equipped with addi-
tional temporal captions, MinT achieves competitive results
with baselines in visual quality and motion smoothness,
while scoring significantly higher in dynamic degree. Fig. 8
shows a qualitative example, where we turn a single-action
prompt into a coherent video with three actions. Please refer
to Appendix C.2 for more qualitative results.

4.5. Ablation Study
We study the effect of each component in our model in
Tab. 3. All ablations are conducted on HoldOut.
Time conditioning. We examine different ways to condi-
tion the model on the event time span. Concat time runs
an MLP to embed timestamps to high dimensional features,
and then concatenates them with text embeddings of tem-
poral captions. However, since our base model uses RoPE,

Method VQ ↑ DD ↑ CLIP-T ↑ TA ↑ TC ↑ #Cuts ↓

Full Model 2.56 3.32 0.270 2.92 2.44 0.026

Concat time 2.53 3.31 0.249 2.42 2.33 0.075
Hard attn mask 2.45 3.34 0.260 2.68 2.30 0.069
Vanilla RoPE 2.54 3.32 0.262 2.79 2.42 0.030

ReRoPE (L=4) 2.54 3.33 0.264 2.88 2.43 0.029
ReRoPE (L=16) 2.55 3.32 0.265 2.90 2.44 0.025

No cut condition 2.54 3.33 0.268 2.89 2.34 0.084

Table 3. Ablation results on HoldOut. We study different con-
ditioning mechanisms for event time span, the rescale length L in
ReRoPE, and the use of scene cut conditioning. VQ, DD, TA, and
TC stand for visual quality, dynamic degree, text-to-video align-
ment, and temporal consistency from VideoScore. #Cuts is the
average number of scene cuts per video.

the video tokens do not contain absolute positional informa-
tion. Therefore, doing cross-attention with time-embedded
text features cannot associate events to video frames, lead-
ing to significantly worse text alignment with event cap-
tions. Hard attn mask adopts hard masking in the temporal
cross-attention, where events only attend to frames within
its time range. This enables synthesizing events at desired
time periods. However, hard masking prevents video tokens
at event boundaries from attending to upcoming events, re-
sulting in abrupt event transitions thus lower temporal con-
sistency and more scene cuts. Finally, Vanilla RoPE en-
codes video tokens and text embeddings of events with raw
timestamps. As discussed in Fig. 4, it fails to accurately
locate event borders, which degrades the control of event
timing as indicated by the lower text alignment scores.
ReRoPE rescaling length L. By default, we set L = 8.
Tab. 3 shows that using L = 4 or 16 achieves similar re-
sults. This indicates that the model is insensitive to this
hyper-parameter. Please refer to Appendix A.3 for more
discussions on ReRoPE with different values of L.
Scene cut conditioning. In the last row of Tab. 3, we re-
move the scene cut conditioning during training. As dis-
cussed in Sec. 3.3, without access to scene cut informa-
tion, the model will introduce undesired shot transitions in
the generated video. Indeed, this variant has similar visual
quality and text alignment as our full model, but scores
much lower in temporal consistency and generates more
cuts. Please refer to Appendix C.3 for more analysis.

5. Conclusion

We present MinT, a framework for multi-event video gen-
eration with event timing control. Our method employs
a unique positional encoding method to guide the tempo-
ral dynamics of the video, resulting in smoothly connected
events and consistent subjects. Equipped with LLMs, we
further design a prompt enhancer that can generate motion-
rich videos from a simple prompt. We view our work as an
important step towards controllable content creation tools.
We discuss our limitations and failure cases in Appendix D.
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mad Babaeizadeh, Mohammad Taghi Saffar, Nick Pezzotti,
Pieter-Jan Kindermans, Poorva Rane, Rachel Hornung,
Robert Riachi, Ruben Villegas, Rui Qian, Sander Dieleman,
Serena Zhang, Serkan Cabi, Shixin Luo, Shlomi Fruchter,
Signe Nørly, Srivatsan Srinivasan, Tobias Pfaff, Tom Hume,
Vikas Verma, Weizhe Hua, William Zhu, Xinchen Yan,
Xinyu Wang, Yelin Kim, Yuqing Du, and Yutian Chen. Veo,
2024. 3

[77] Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An,
Songyang Zhang, Qiyuan Hu, Harry Yang, Oron Ashual,
Oran Gafni, et al. Make-a-video: Text-to-video generation
without text-video data. In ICLR, 2023. 2

[78] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In ICML, 2015. 2

[79] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In ICLR, 2021. 6, 3
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We highly encourage the readers to check out our project
page for video results of baselines and MinT.

A. Details on Rotary Position Embedding
A.1. Derivation of RoPE
We detail the derivation conducted in Sec. 3.1 of the main
paper. Our derivation mostly follows [53, 67, 81] and only
provides an intuitive motivation for our method. We refer
readers to their papers for more rigorous results.

Given a query vector qn =
[
q
(0)
n , · · · , q(d−1)

n

]
∈ Rd at

index n and a key vector km =
[
k
(0)
m , · · · , k(d−1)

m

]
∈ Rd at

index m, to apply RoPE, it first groups every two elements
in them, and make them complex numbers as:

q̄n =
[
q̄(0)n , · · · , q̄(d/2−1)

n

]
, q̄(l)n = q(2l)n + iq(2l+1)

n ,

k̄m =
[
k̄(0)m , · · · , k̄(d/2−1)

m

]
, k̄(l)m = k(2l)m + ik(2l+1)

m .
(1)

Then, RoPE rotates each complex number by an angle θl,
which is achieved as element-wise multiplication:

q̃n = q̄n ⊙ einθ, k̃m = k̄m ⊙ eimθ, (2)

where θ is determined by the position l of each element in
a vector. We follow prior works [46, 81] to use:

θ =
[
θ0, · · · , θd/2−1

]
, θl = 10000−2l/d. (3)

Eq. (3) indicates that each θl is a fixed value, and thus the
rotation results in Eq. (2) is only decided by the vectors’
index n and m. This is why in the main paper, we only
consider a single θbase instead of θ for different elements.

We can now calculate the attention between q̃n and k̃m:

An,m = Re
[
⟨q̃n, k̃m⟩

]
= Re

[
(q̄ne

inθ) · (k̄meimθ)∗
]

= Re

d/2−1∑
l=0

(q̄(l)n einθl)(k̄(l)∗m e−imθl)


= Re

d/2−1∑
l=0

q̄(l)n k̄(l)∗m ei(n−m)θl


=

d/2−1∑
l=0

(
q(2l)n k(2l)m + q(2l+1)

n k(2l+1)
m

)
cos ((n−m)θl)+(

q(2l)n k(2l+1)
m − q(2l+1)

n k(2l)m

)
sin ((n−m)θl).

(4)

Since we are interested in the bias introduced by RoPE in
attention, we assume all queries qn and all keys km are
the same, so that their attention values without RoPE is the
same. Empirically, we find that query and key vectors in-
deed have similar values in our DiT due to the use of Layer
Normalization [5]. Thanks to the periodic property of sin (·)
and cos (·), from Eq. (4), we have An,m = Am,n, i.e., , the
attention bias between qn and km is only affected by the
absolute distance between the two vectors, |n−m|.

The original RoPE paper [81] proves that the upper
bound of An,m decays monotonically with the distance
|n − m| until around 40. Since the RoPE used in the tem-
poral cross-attention layer only encodes vectors using the
temporal frame index, and our video DiT is trained on video
tokens with up to around 50 frames, we roughly preserve
the monotonicity of RoPE. As we will see in Appendix A.3,
while there are some fluctuations of An,m in the long range,
the long-term decay makes their values significantly low.

A.2. Proof of the Property of ReRoPE
In Sec. 3.2 of the main paper, we propose to rescale all
events to a fixed length L. For a timestamp t lying in the
n-th event, we transform it as:

t̃ =
(t− tstartn )L

tendn − tstartn

+(n− 1)L, s.t. tstartn ≤ t ≤ tendn ,

t̃mid
n = L/2 + (n− 1)L. (5)

After transformation, the distance between a video token in
the n-th event and the middle timestamps of this event is:∣∣t̃− t̃mid

n

∣∣ = ∣∣∣∣ t− tstartn

tendn − tstartn

− 1

2

∣∣∣∣L. (6)

Next, we prove that it satisfies the three desired properties
of the temporal cross-attention:
(i) For video tokens within the time span of an event, they
should attend the most to the text embedding of this event.
Proof For tstartn ≤ t ≤ tendn , we have:

−1

2
≤

(
t− tstartn

tendn − tstartn

− 1

2

)
≤ 1

2
, (7)

thus,
∣∣t̃− t̃mid

n

∣∣ ≤ L/2. For any m-th event with m ̸= n,
its distance to this video token is:∣∣t̃− t̃mid

m

∣∣ = ∣∣∣∣( t− tstartn

tendn − tstartn

− 1

2

)
+ (n−m)

∣∣∣∣L. (8)

Since |n−m| ≥ 1, we get:∣∣∣∣( t− tstartn

tendn − tstartn

− 1

2

)
+ (n−m)

∣∣∣∣ ≥ 1

2
. (9)
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Event 1
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Event 3

Figure 9. Comparison of ReRoPE with different rescaling
length L. We use the same random vector for video tokens and
text embeddings to only visualize the bias introduced by positional
encoding. We visualize the case where videos have a temporal di-
mension of 50, and there are three temporal captions.

Therefore, we have:∣∣t̃− t̃mid
m

∣∣ ≥ L/2 ≥
∣∣t̃− t̃mid

n

∣∣ , ∀ m ̸= n. (10)

Since RoPE attention decays monotonically with the dis-
tance, we reach the property.
(ii) For an event, the attention weight should peak with the
video token at the midpoint of its time span, and then de-
crease towards the boundary of the event.
Proof When a video token is at the midpoint of an event,
we have t̃ − t̃mid

n = 0. Thus, the attention weight will be
the highest. In addition, Eq. (6) increases when t goes from
tmid
n to tstartn or tendn , leading to a decreased weight.

(iii) The video token at the transition point between two
events should attend equally to their text embeddings.
Proof For t = tstartn or tendn , we always have the distance∣∣t̃− t̃mid

n

∣∣ = L/2. Thus, the attention value is the same
for video tokens at event borders. This is only possible in
ReRoPE as we rescale all events to have the same length.

A.3. Visualizations of ReRoPE
In Sec. 4.5 of the main paper, we show that using different
rescaling length L in ReRoPE leads to similar results. Fig. 9
visualizes the cross-attention map using L = 4, 8, and 16.
The three attention maps are indeed similar, which explains
why the performances are close. We also notice that with
a higher L, the attention map of each event becomes more
concentrated. It would be an interesting direction to study
its effect in depth, which we leave for future work.

B. Detailed Experimental Setup
In this section, we provide full details on the datasets, base-
lines, evaluation settings, and the training and inference im-
plementation details of our model.

B.1. Training Data
Before this work, there are mainly two types of video
datasets that annotate open-set event captions and their pre-
cise timestamps. One such field is dense video caption-
ing [38, 44, 105]. However, these datasets are limited in
scale (usually fewer than 10k videos), which makes it im-
possible to fine-tune a large-scale video generator. Another
field is video chaptering [99]. However, the temporal cap-
tions here are high-level chapter segmentation, where each
annotated event is usually longer than one minute. This is
too long for current video diffusion models to be trained on.

Since our model requires large-scale and fine-grained
video event annotations, we manually source videos from
existing datasets [18, 98] and annotate them, resulting in
around 200k videos. To condition the model on scene cuts,
we run TransNetV2 [80] to detect scene boundaries on an-
notated videos with a confidence threshold of 0.5.

Fig. 10 present some basic statistics of our dataset.
While our training videos have varying lengths, the number
of events per video and the average event length are similar,
which makes model training easier.
Data processing. The training dataset contains videos of
different lengths, resolutions, and aspect ratios. Following
common practice [68, 103], we use data bucketing, which
groups videos into a fixed set of sizes. Overall, we sample
videos up to 512 resolution, and 10s during training. We
pad to or subsample 4 temporal captions for batch training.

B.2. Evaluation Datasets
HoldOut. We randomly sample 2k videos from our train-
ing data as a holdout testing set. The prompts here are in-
distribution with a minimum gap to training data.
StoryBench [12] consists of videos collected from
DiDeMo [4], Oops [20], and UVO [91] datasets. It anno-
tates each video with a background caption and one or more
temporal captions similar to our format. We treat their back-
ground caption as the global caption in our setting, showing
our model’s generalization to out-of-distribution prompts.
We filter out videos with only a single event, leading to
around 3k testing samples.
VBench [39] is a comprehensive benchmark that tests dif-
ferent aspects of a video generation model. It has 16 evalu-
ation dimensions, each with a carefully collected list of text
prompts. Since we are interested in the dynamics of gen-
erated videos, we choose the Dynamic Degree dimension,
which provides 72 prompts. Following the official evalua-
tion protocol, we run each model to generate 5 videos using
each prompt with 5 random seeds.
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Figure 10. Basic statistics of our training dataset. We show the distribution of video length, the number of events per video, and the
length of individual events. Most videos contain 2 to 4 events, and most events are under 5s.

B.3. Baselines
We only compare to methods that can generate smoothly
connected events and have released their code.
MEVG [63] is the state-of-the-art multi-event video gener-
ation method. Given a sequence of event prompts, it gener-
ates the first video clip using the first event prompt. Then,
to generate the next event, it runs DDIM inversion [79] to
obtain the inverted noise latent of the previous clip, which
is used to initialize the current noise latent. Then, when de-
noising the current latent, it also introduces several losses
to enforce latent at adjacent frames to be similar. Origi-
nal MEVG builds upon LVDM [29] and VideoCrafter [13]
which are outdated. For a fair comparison, we re-implement
it based on our base model. As far as we know, there is no
prior work on inverting a rectified flow model, so we follow
DDIM inversion to implement RF inversion which achieves
similar results. To handle both global and temporal cap-
tions, we generate the first clip by concatenating the global
caption and the first temporal caption. We keep other losses
and hyper-parameters the same as in MEVG2.
AutoReg. We fine-tune our base model to support initial
frame conditioned video generation. The method is similar
to MEVG, where we generate one event based on its own
caption and the last frame of the previous clip.
Concat is a naive baseline that simply concatenates the
global caption and all temporal captions to form a long
prompt, and generates a video from it.
Remark. Since both MEVG and AutoReg are autoregres-
sive methods, they can only generate fixed-length videos for
each event. To enable comparison, we simply assume that
the testing events all have the same duration when comput-
ing metrics. For Concat, it cannot separate the generation
of different events. We thus assume all events are uniformly
distributed in the generated video.

B.4. Evaluation Metrics
We identify three key aspects in multi-event text-to-video
generation: visual quality, event text alignment, and event
transition smoothness. We report common metrics such as

2MEVG did not release the code at the time of paper submission. We
obtain the official code from authors through private email communication.

FID [33], FVD [84] for visual quality, and per-frame CLIP-
score [32, 71] for text alignment. We have tried more ad-
vanced metrics such as X-CLIP-score [62], but found it to
perform similarly as CLIP-score.

It is well-known that traditional automatic metrics are
not aligned with human perceptions. Recent works show
that fine-tuning multi-modal LLMs on human feedback
data can lead to more human-aligned video quality assess-
ment metrics [28]. We take the state-of-the-art method
VideoScore which outputs five scores for a video. We use
the visual quality and dynamic degree output for visual
quality, the text-to-video alignment output for text align-
ment, and the temporal consistency output for event transi-
tion smoothness. We further run TransNetV2 [80] to com-
pute the average number of cuts in generated videos to mea-
sure event transition smoothness.

For visual quality and event transition smoothness, we
compute relevant metrics on the entire video. We have also
computed the visual quality of each event, and found it to be
positively correlated with video-level results. For text align-
ment, since we care about event generation, we take the start
and end timestamps of each event, crop out a sub-clip from
the generated video, and compute metrics between this sub-
clip and the corresponding event prompt.

B.5. Implementation Details

Base model. Our base text-to-video generator adopts the
latent Diffusion Transformer framework [66]. It leverages
a MAGVIT-v2 [101] as the autoencoder and a deep cascade
of DiT blocks as the denoising backbone. The autoencoder
is similar to the one in CogVideoX [100], which downsam-
ples the spatial dimensions by 8× and the temporal dimen-
sion by 4×. Our backbone has 32 DiT blocks. Each block
is similar to the one in Open-Sora [46], which consists of a
3D self-attention layer running on all video tokens, a cross-
attention layer between video tokens and T5 text embed-
dings [72] of the input prompt, and an MLP. We do not use
absolute positional encoding on video tokens. Instead, we
apply RoPE in self-attention, which is factorized into spatial
and temporal axes, similar to [46]. Finally, we use FlashAt-
tention [19] in both self-attention and cross-attention.

3



O
u

rs
C

on
ca

t
A

ut
oR

eg
M

E
V

G

Prompts: “A woman is writing on a paper” → “She looks at the right as a man holding a clipboard is coming to her” → “They look at each other and discuss with the paper”

Figure 11. Qualitative comparisons of T2V.

Prompts: “A woman stands with head turns left and arms crossed” → “looks at the camera, puts her hands down and laughs” → “puts her left hand resting at waist level”

Prompts: “A woman stands straight with a smile” → “smiles with her hands closed at her stomach” → “begins to laugh while her torso is slightly bent forward”

Prompts: “A woman is writing something on a table” → “looks upwards with a smile and spreads her arms” → “resumes to write something on the table”

Prompts: “A man holds a tablet in his left hand and uses it” → “points his right hand to some blue bottles” → “looks at the tablet again” → “turns to look at the camera”

Prompts: “A woman is tapping on a phone” → “extends the phone forward with both hands to take a selfie” → “lowers the phone and taps on it” → “adjusts her hair”

Prompts: “A woman waves with her right hand” → “talks while gesturing her both hands” → “makes a heart gesture” → “gives a blow kiss with her right hand”

Figure 12. More T2V results from MinT. Please see our project page for more results.

The base model adopts the rectified flow training objec-
tive [51, 52]. We follow Stable Diffusion 3 [21] to choose
the sampling parameters for the diffusion process.

MinT model. We fine-tune MinT from the base model to
enable temporal caption control. We copy weights from
the original cross-attention layer to initialize our added tem-
poral cross-attention layer to accelerate convergence, since
both layers take in the same text modality. Following prior
works [47], we introduce a scaling factor that is initialized
as 0, and we pass it through a Tanh(·) activation to multi-
ply with the temporal cross-attention layer output. Such a
design has been shown to stabilize model training.

Training. We use AdamW [55] to fine-tune the entire
model with a batch size of 512 for 15k steps. We use a low
learning rate of 1× 10−5 for the pre-trained weights, and a
higher one of 1 × 10−4 for the added weights. Both learn-
ing rates are linearly warmed up in the first 1k steps and stay

constant. A gradient clipping of 0.05 is applied to stabilize
training. To apply classifier-free guidance (CFG) [34], we
randomly drop the text embedding of global and temporal
captions (i.e., setting them as zeros) with a probability of
10%. Notice that when dropping the temporal captions, we
drop all events together and also set the event timestamps
to zeros. We implement our model using PyTorch [65] and
conduct training on NVIDIA A100 GPUs.

Inference. We use the rectified flow sampler [52] with 256
sampling steps and a classifier-free guidance [34] scale of
8 to generate videos. We also use interval guidance [45]
in CFG to mitigate the oversaturation issue, which only ap-
plies CFG between [25, 100] sampling steps. We have tried
using separate CFG for global and temporal captions simi-
lar to in [10], but did not find it to improve results.
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Prompts: “A bear stands in a river” → “It catches a fish from the water” → “It holds the fish with its powerful jaw”
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Prompts: “Close-up of a static bike wheel” → “zooms out showing the rider pedaling” → “speeding up on the street”
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Prompts: “A cat walks towards a bowl” → “It laps water with its tongue” → “It lifts its head and looks around”

Short prompt: “a cat drinking water”

Short prompt: “a bear catching a salmon in its powerful jaws”

Short prompt: “a bicycle accelerating to gain speed”

Figure 13. Prompt enhancement results on VBench. We can generate more interesting videos from a simple prompt. This highlights the
flexible dynamics control ability brought by the temporal captions. Please see our project page for video results.

C. More Results

C.1. More Qualitative Results on T2V
Fig. 11 presents more qualitative comparisons with base-
lines. Concat only generates the woman writing on a pa-
per while ignoring the subsequent events. AutoReg is able
to synthesize a smooth transition between the first and the

second event, but it fails to generate the third event. This
is because conditioning on generated frames leads to video
stagnation and results in frozen frames. MEVG generates
each event well, but they are connected with abrupt shot
transitions and completely different subjects. This is due
to the free-form event captions we use, which change the
subjects frequently. As a result, the inversion technique in
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Prompts: “The man plays the piano” → “He takes some papers and shakes them in front of the camera” → “He puts the papers back”

w
ith
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Prompts: “The man is talking while holding the phone” → “A close-up shot of the man…” → “A medium shot of the man…”

w
ith
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w
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Figure 14. Generated videos with and without scene cut input. In each example, the first row is generated by inputting the scene cut
at the illustrated timestamps, while the second row is by zeroing out the scene cut input. When using the scene cut, the model is able to
generate a shot transition at desired timestamps, while keeping the subject consistent. In the second example, the model generates smooth
zoom-in and zoom-out effects when zeroing out scene cuts. Please see our project page for more results.

MEVG cannot preserve the subjects well. So far, there is no
inversion method designed for rectified flow models. Over-
all, MinT is the only method that successfully generates all
events with smooth transitions and consistent entities.

We show more qualitative results of MinT in Fig. 12.
Human-related subjects are known to be challenging in vi-
sual generation tasks. Yet, the results demonstrate our flex-
ible control of human action sequences and time lengths.

C.2. Prompt Enhancement
Our prompt enhancer is built upon GPT-4 [3] and can ex-
tend a short prompt to a detailed global caption and mul-
tiple temporal captions with reasonable event timestamps.
We provide the instruction we used on our project page. It
is inspired by recent works [54, 63] and uses in-context ex-
amples from our dataset for better performance.

We show more prompt enhancement results using
VBench prompts in Fig. 13. Thanks to the powerful LLM,
our prompt enhancer can extend a short prompt to rea-
sonable sequential events, covering rich object motion and
camera movement. MinT can then generate more interest-
ing and “eventful” videos from the extended prompt. This
highlights the unique capability of our method, opening up a
new direction towards more user-friendly video generation.

C.3. Scene Cut Conditioning
As shown in the ablation, removing scene cut conditioning
leads to undesired shot transitions in generated videos. A

closer inspection reveals that the generation of cuts is sen-
sitive to the text prompt of an event. When it contains a
description of the camera shot (e.g., “a close-up view of”),
it is more likely to introduce a cut. In contrast, explicitly
conditioning on scene cuts frees us from this issue.

We show some qualitative scene cut control results in
Fig. 14. MinT is able to generate shot transitions at desired
timestamps, while preserving subject identities. When zero-
ing out the scene cut input, we can get cut-free videos which
validates our design. Finally, we show that our model can
switch between sudden camera changes or gradual zoom-in
and zoom-out effects, enabling fine-grained control.

An interesting direction is to learn different types of
scene transitions such as jump cut, dissolve, and wipe.
Since our goal is to retain training data instead of learning
fancy transition control, we leave this for future work.

C.4. Event Time Span Control

MinT supports fine-grained control of event time span. To
show this, we take a sample from our dataset and offset the
start and end timestamps of all events by a specific value.
Fig. 15 presents the results, where each video generates
events following its new timing. In addition, we can roughly
keep the appearance of the main subject and background un-
changed. MinT is the first video generator in the literature
that achieves this control ability. We view it as an important
step towards a practical content generation tool.
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Prompts: “A woman stands with head turns left and arms crossed” → “looks at the camera, puts her hands down and laughs” → “puts her left hand resting at waist level”
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Figure 15. Generated videos with different event time spans. In each example, we offset the start and end timestamps of all events by a
specific number of seconds. Results show that MinT enables fine-grained event timing control while keeping the subjects’ appearances to
be roughly the same. This capability is very useful for controllable video generation. Please see our project page for more results.

Method FID ↓ FVD ↓ CLIP-score ↑

Task: T2V (a.k.a. story generation in [12])

Phenaki 273.41 998.19 0.210
Ours 40.87 484.44 0.284

Task: I2V (a.k.a. story continuation in [12])

Phenaki 240.21 674.5 0.219
Ours 21.85 314.59 0.273

Table 4. Comparison with Phenaki on StoryBench. We com-
pare with the zero-shot variant Phenaki-Gen-ZS in their paper [12]
since our model is not fine-tuned on StoryBench. We clearly out-
perform Phenaki across all metrics in both tasks.

C.5. StoryBench Comparison with Phenaki
The original StoryBench paper [12] proposed a baseline for
their dataset, which runs Phenaki [87] to generate events
in an autoregressive way. However, they conducted evalua-
tion on a much lower resolution (160×96), and neither their
code nor pre-trained weights were released, making a di-
rect comparison hard. We still compare with them in Tab. 4
for completeness. We only report metrics that both papers
evaluate, which cover visual quality (FID, FVD) and text
alignment (CLIP-score). MinT significantly outperforms
Phenaki across all metrics in both T2V and I2V tasks. This
demonstrates the effectiveness of fine-tuning from a large-
scale pre-trained video model.

C.6. Comparison with SOTA Video Generators
To show that sequential event generation is a common fail-
ure case of even SOTA video generators, we present more
results in Fig. 17 and Fig. 18. One surprising observation
we had is that, when using prompts following the official
guideline of these models (e.g., using the LLM provided
by CogVideoX to enhance prompts), the model only gen-
erates the first event and ignores all subsequent ones. Only

if we directly concatenate event captions without specify-
ing global properties such as camera motion, background
description, and detailed subject attributes (i.e., directly use
prompts like “A person first do A, then do B, and finally do
C”), the model starts to generate some events transitions.3

One possible cause is that in the training data of these mod-
els, videos with sequential events are never annotated with
such detailed global properties. However, since we do not
have access to their training details, we can’t figure out the
true reason behind it. Therefore, we just use naively con-
catenated prompts to generate all results. The prompts we
used for these models can be found on our project page.
Notably, this workaround prevents us from using detailed
captions to control the scene and subjects, which greatly af-
fects the controllability of these models.

Still, when prompted with a text that contains multiple
events, these models have three common failure modes:

1. Only generates partial events, and completely ignores the
remaining ones. For example, in the third example in
Fig. 17, all models miss the “blow kiss” action;

2. Generates events in the wrong order or “merge” multiple
events. For example, in the last example in Fig. 17, Kling
1.5 generates the man with his hand under his mouth at
the beginning of the video. Yet, this should happen last;

3. Bind wrong actions or properties to subjects. For exam-
ple, in the first example in Fig. 18, Gen-3 Alpha generates
a woman coming into the frame instead of a man.

Remark. There might be other ways to fix this issue without
using temporally-grounded captions as in MinT. For exam-
ple, one may fine-tune the model on video datasets anno-
tated with detailed sequential event information [97]. Still,
this will not allow precise control over the start and end
times of events, which is a unique capability of our model.

3The detailed prompt does not exceed the maximum input text length
of these models, so context length is not the reason here.
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Prompts: “The astronaut picks up a sparker” → “lights up the sparkler” → “waves the lit sparkler in a circle” → “holds up the sparkler at eye level and looks at it”

Prompts: “Two warriors on a cliff” → “One warrior attacks” → “The other one defends, causing sparks to fly from the swords' contact” → “They circle each other”

Prompts: “Starships glide through space” → “gets attacked by an energy beams” → “combusts into a fiery explosion” → “The ego starship retreats to evade conflicts”

Prompts: “A cat is lying on a yoga mat” → “stretches its back to a dog pose” → “raises its front paw as a tree pose” → “lowers its paw and moves to a cobra pose”

Figure 16. Generated videos with out-of-distribution prompts. After fine-tuning, MinT still possesses the base model’s ability to
generate novel concepts. Please see our project page for more results.

C.7. Out-of-Distribution Prompts

MinT is fine-tuned on temporal caption videos that mostly
describe human-centric events. In the paper, we have shown
some non-human results such as animals and traffics. Here,
we show that our model still possesses the ability to gener-
ate novel concepts and their combinations, which is an im-
portant property of large-scale pre-trained video generators.
As shown in Fig. 16, MinT generates out-of-distribution
characters such as warriors and astronaut, scenes such as
starships in the space, and non-existing events such as a cat
doing yoga. This proves that our model does not forget the
rich pre-training knowledge in the base model.

D. Limitations and Future Works

MinT is fine-tuned from a pre-trained text-to-video diffu-
sion model, and thus we are bounded by the capacity of the
base model. For example, it is challenging to generate hu-
man hands or scenes involving complex physics.

When generating an event involving multiple subjects,
MinT may fail to associate attributes and actions to the cor-
rect subject. Similar to the temporal binding problem we try
to address in this paper, we believe this issue can be solved
with spatial binding. For example, by grounding subjects
with bounding boxes and attribute labels [47, 49, 90].

Finally, MinT sometimes fails to associate entities speci-
fied in the global caption and temporal captions. Such asso-
ciation requires complex reasoning of the text conditioning,
and may be resolved by simply scaling up the training data.

Please refer to our project page for video examples and
detailed analysis of these failure cases.
Future works. It is interesting to enhance our model with
recent progress in training-free long video generation tech-
niques [31, 70, 88]. Another direction is to combine MinT
with video personalization methods [40, 50, 54] to enable

both fine-grained control within a shot and subject consis-
tency across shots for minute-long video creation.
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Prompts: “A woman is tapping on a phone” → “extends the phone forward with both hands to take a selfie” → “lowers the phone and taps on it” → “adjusts her hair”
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Prompts: “A man holds a tablet in his left hand and uses it” → “points his right hand to some blue bottles” → “looks at the tablet again” → “turns to look at the camera”

O
u

rs
C

og
V

id
eo

X
-5

B
K

lin
g 

1.
5

G
en

-3
 A

lp
ha

Prompts: “A woman waves with her right hand” → “talks while gesturing her both hands” → “makes a heart gesture” → “gives a blow kiss with her right hand”
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Prompts: “A woman takes a sip from a cup and puts it down” → “A man is writing something on the paper” → “They both start thinking with their left hand under their mouth”
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Figure 17. More comparisons with SOTA video generators. We run SOTA open-source models CogVideoX [100] and Mochi [82], and
commercial models Kling 1.5 [2] and Gen-3 Alpha [1] using their online APIs. Please see our project page for video results.

https://mint-video.github.io/#compare-with-sota
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Prompts: “A man lifts his head and arms up” → “lowers his head and arms down” → “moves his head and arms to his left” → “moves his head and arms to his right”

Prompts: “A man is typing on a laptop” → “touches his headphone with his right hand” → “closes the laptop with his left hand” → “stands up”
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Prompts: “A woman is writing something on a table” → “looks upwards with a smile and spreads her arms” → “resumes to write something on the table”
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Prompts: “A woman stands straight with a smile” → “smiles with her hands closed at her stomach” → “begins to laugh while her torso is slightly bent forward”
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Figure 18. More comparisons with SOTA video generators. We run SOTA open-source models CogVideoX [100] and Mochi [82], and
commercial models Kling 1.5 [2] and Gen-3 Alpha [1] using their online APIs. Please see our project page for video results.

https://mint-video.github.io/#compare-with-sota
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